Hybrid Inverse Problems and Redundant Systems of Partial Differential Equations
نویسنده
چکیده
Hybrid inverse problems are mathematical descriptions of coupled-physics (also called multi-waves) imaging modalities that aim to combine high resolution with high contrast. The solution of a high-resolution inverse problem, a first step that is not considered in this paper, provides internal information combining unknown parameters and solutions of differential equations. In several settings, the internal information and the differential equations may be described as a redundant system of nonlinear partial differential equations. We propose a framework to analyze the uniqueness and stability properties of such systems. We consider the case when the linearization of the redundant system is elliptic and with boundary conditions satisfying the Lopatinskii conditions. General theories of elliptic systems then allow us to construct a parametrix for such systems and derive optimal stability estimates. The injectivity of the nonlinear problem or its linearization is not guaranteed by the ellipticity condition. We revisit unique continuation principles, such as the Holmgren theorem and the uniqueness theorem of Calderón, in the context of redundant elliptic systems of equations. The theory is applied to the case of power density measurements, which are internal functionals of the form γ|∇u| where γ is an unknown parameter and u is the solution to the elliptic equation ∇ · γ∇u = 0 on a bounded domain with appropriate boundary conditions.
منابع مشابه
Initial value problems for second order hybrid fuzzy differential equations
Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia
متن کاملDhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations
In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...
متن کاملOn The Simulation of Partial Differential Equations Using the Hybrid of Fourier Transform and Homotopy Perturbation Method
In the present work, a hybrid of Fourier transform and homotopy perturbation method is developed for solving the non-homogeneous partial differential equations with variable coefficients. The Fourier transform is employed with combination of homotopy perturbation method (HPM), the so called Fourier transform homotopy perturbation method (FTHPM) to solve the partial differential equations. The c...
متن کاملAn inverse problem of identifying the coefficient of semilinear parabolic equation
In this paper, a variational iteration method (VIM), which is a well-known method for solving nonlinear equations, has been employed to solve an inverse parabolic partial differential equation. Inverse problems in partial differential equations can be used to model many real problems in engineering and other physical sciences. The VIM is to construct correction functional using general Lagr...
متن کاملSimulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method
In this paper, we present a comparative study between the modified variational iteration method (MVIM) and a hybrid of Fourier transform and variational iteration method (FTVIM). The study outlines the efficiencyand convergence of the two methods. The analysis is illustrated by investigating four singular partial differential equations with variable coefficients. The solution of singular partia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013